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Abstract. The production of K+-mesons in proton-nucleus collisions from 1.0 to 2.5GeV is analyzed
with respect to one-step nucleon-nucleon (NN → NY K+) and two-step ∆-nucleon (∆N → K+Y N) or
pion-nucleon (πN → K+Y ) production channels on the basis of a coupled-channel transport approach
(CBUU) including the kaon final-state interactions. The influence of momentum-dependent potentials
for the nucleon, hyperon and kaon in the final state are studied as well as the importance of K+ elastic
rescattering in the target nucleus. The transport calculations are compared to the experimental K+ spectra
taken at LBL Berkeley, SATURNE, CELSIUS, GSI and COSY-Jülich. It is found that the momentum-
dependent baryon potentials affect the excitation function of the K+ cross-section; at low bombarding
energies of ∼ 1.0GeV the attractive baryon potentials in the final state lead to a relative enhancement of
the kaon yield, whereas the net repulsive potential at bombarding energies ∼ 2GeV causes a decrease of
the K+ cross-section. Furthermore, it is pointed out that especially the K+ spectra at low momenta (or
kinetic energy TK) allow to determine the in-medium K+ potential almost model independently due to
a relative shift of the K+ spectra in kinetic energy that arises from the acceleration of the kaons when
propagating out of the nuclear medium to free space, i.e. converting the potential energy to the kinetic
energy of the free kaon.

PACS. 13.60.Le Meson production – 13.75.Jz Kaon-baryon interactions – 14.40.Aq π, K, and η mesons
– 25.40.-h Nucleon-induced reactions

1 Introduction

The production of mesons heavier than pions in p+A re-
actions at bombarding energies far below and close to the
free nucleon-nucleon threshold is of specific interest [1–18]
as one hopes to learn either about cooperative nuclear
phenomena and/or about high-momentum components
of the nuclear many-body wave function that arise from
nucleon-nucleon correlations. Especially K+-mesons have
been considered as promising hadronic probes [19,20] due
to the rather moderate final-state interaction, which is a
consequence of strangeness conservation and the fact that
there are no baryon resonances with antistrange quarks
in nuclei. Antihyperons, furthermore, have a much larger
production threshold and annihilate very fast in nuclei.
On the other hand, the kaon properties might change in
the nuclear medium [21] such that conclusions on cooper-

a e-mail: Wolfgang.Cassing@theo.physik.uni-giessen.de

ative nuclear phenomena require a precise understanding
of the (anti) kaon potentials at finite nuclear density.

Experiments on K± production from nucleus-nucleus
collisions at SIS energies of 1–2 A · GeV have shown that
in-medium properties of the kaons are seen in the collec-
tive flow pattern of K+-mesons both, in-plane and out
of plane, as well as in the abundancy of antikaons [22,23].
Thus in-medium modifications of the mesons have become
a topic of substantial interest in the last decade triggered
in part by the early suggestion of Brown and Rho [24] that
the modifications of hadron masses should scale with the
scalar quark condensate 〈qq̄〉 at finite baryon density.

As demonstrated in the pioneering work of Kaplan and
Nelson [21] kaons and antikaons couple attractively to the
scalar nucleon density with a strength proportional to the
KN -Σ constant,

ΣKN =
1
2
(
m0

u +m0
s

)〈N |ūu+ s̄s|N〉, (1)
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which is not well known at present and may vary from 270
to 450 MeV. In (1) m0

u and m0
s denote the bare masses for

the light u- and strange s-quark while the expression in
the brackets is the expectation value of the scalar light
and strange quark condensate for the nucleon [22]. Fur-
thermore, a vector coupling to the quark 4-current —for
vanishing spatial components— leads to a repulsive poten-
tial term for the kaons; on the other hand, this (Weinberg-
Tomozawa) term is attractive for the antikaons.

In chiral effective theories the dispersion relation for
kaons and antikaons in the nuclear medium —for low
momenta— can be written as [25]

ωK(ρN ,p) = +
3
8
ρN

f2
π

+

[
p2 +m2

K
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πm

2
K
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8f2
πmK

)2)]1/2

, (2)
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.

(3)

In eqs. (2), (3) mK denotes the bare kaon mass, fπ ≈
93 MeV is the pion decay constant, while ρs and ρN stand
for the scalar and vector nucleon densities, respectively. As
shown in ref. [26], for ΣKN = 450 MeV one ends up with
an effective kaon potential which is close to zero below or-
dinary nuclear-matter density ρ0 and becomes more repul-
sive above ρ0. On the other hand, usingΣKN = 270 MeV a
repulsive kaon potential of ≈ 25 MeV at normal nuclear-
matter density is obtained. Note that, when extrapolat-
ing (3) to 3ρ0 and above, the antikaon mass becomes
very light. Thus antikaon condensates might occur at high
baryon density which, furthermore, are of great interest in
the astrophysical context [27–29].

However, the actual kaon and antikaon self-energies (or
potentials) are quite a matter of debate —due to higher-
order terms in the chiral expansion— especially for the
antikaon [30–32] and the momentum dependence of their
self-energies is widely unknown (except for a dispersion
analysis in ref. [33]), since most Lagrangian models re-
strict to s-wave interactions or only include additional p-
waves. It is thus mandatory to perform experimental stud-
ies of the (anti) kaon properties under well-controlled con-
ditions, e.g. in proton-nucleus reactions, where one probes
the (anti) kaon self-energies at normal nuclear-matter den-
sity ρ0 ≈ 0.16 fm−3 and below. Furthermore, by gating on
kaon momenta in the laboratory, one might be able to
obtain information on the momentum dependence of the
self-energies, too.

K+ production in p+A collisions at subthreshold ener-
gies has been observed experimentally more than a decade
ago by Koptev et al. [20] at bombarding energies from
0.8 to 1.0 GeV. However, only total K+ yields could be

extracted at that time. Nevertheless, the target-mass de-
pendence of the K+ yield (∼ A) suggested the dominance
of two-step reactions with an intermediate pion or ∆. De-
tailed folding-model calculations in refs. [17,18] essentially
came to the same conclusion. First differential K+ spectra
from p + NaF and p + Pb reactions from the LBL Berke-
ley had been performed at Tlab = 2.1 GeV [34], i.e. far
above the NN threshold of 1.58 GeV in free space. Only
in more recent years differential K+ spectra have been
measured down to 1.2 GeV for 12C targets at 40◦ [35]
(at SATURNE) or 90◦ in the laboratory [36] (at CEL-
SIUS). Unfortunately, the different experiments have no
overlap in acceptance and the interpretation of the data,
if compatible at all, remains vague [15]. First data on the
full momentum distribution at forward angles have been
presented very recently by the ANKE Collaboration at
COSY-Jülich [37] for K+-mesons from p + 12C reactions
at 1.0 GeV [38]. These data show a kinematical focussing
of the spectra at a finite momentum of ≈ 350 MeV/c,
which appears incompatible with the cross-section from
ref. [36]. Thus, a systematic comparison of all data is ur-
gently needed within an adequate theoretical approach
that allows to compare the kinematically restricted data
on the same footing.

In this study we use the coupled-channel (CBUU)1
transport model that has first been developed in ref. [39]
for the description of nucleus-nucleus collisions and later
on employed for the simulation of pion- and proton-
nucleus reactions [33,40,41] too. For applications to K±
production in nucleus-nucleus collisions at SIS energies we
refer the reader to ref. [42]. In this model the effects of
momentum-dependent self-energies for all hadrons can be
studied explicitly as well as their production and propa-
gation in the nuclear medium.

The paper is organized as follows: We briefly recapitu-
late the ingredients of the CBUU model in sect. 2, present
the extensions performed in this study with respect to the
treatment of K+Y differential production channels from
secondary πN reactions and investigate in particular the
effects from K+N rescattering. In sect. 3 we compare the
transport calculations to the experimental spectra avail-
able from different laboratories and explore the sensitivity
of the K+ spectra to the momentum-dependent potentials
employed. A summary and discussion of open problems
concludes this paper in sect. 4.

2 Ingredients of the extended transport model

In this work we perform our analysis along the line of
the CBUU approach [39] which is based on a coupled set
of transport equations for the phase-space distributions

1 Coupled-Channel Boltzmann-Uehling-Uhlenbeck.
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fh(x, p) of hadron h, i.e. [43,44](
Πµ −Πν∂

p
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ν
h −M∗

h∂
p
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)
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xfh(x, p) (4)

+
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h +M∗
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p fh(x, p) =∑
h2h3h4...

∫
d2 d3 d4 . . . [G†G]12→34...

×δ4(Π +Π2 −Π3 −Π4 · · · )
×{

fh3(x, p3)fh4(x, p4)f̄h(x, p)f̄h2(x, p2)

−fh(x, p)fh2(x, p2)f̄h3(x, p3)f̄h4(x, p4)
}
. . . . (5)

In eq. (4) US
h (x, p) and Uµ

h (x, p) denote the real part of the
scalar and vector hadron self-energies, respectively, while
[G†G]12→34...δ

4(Π +Π2 −Π3 −Π4 · · · ) is the “transition
rate” for the process 1 + 2 → 3 + 4 + · · · which is taken to
be on-shell in the semiclassical limit adopted. The hadron
quasi-particle properties in (4) are defined via the mass-
shell constraint

δ(ΠµΠ
µ −M∗2

h ), (6)

with effective masses and momenta (in local Thomas-
Fermi approximation) given by [43]

M∗
h(x, p) = Mh + US

h (x, p),
Πµ(x, p) = pµ − Uµ

h (x, p), (7)

while the phase-space factors

f̄h(x, p) = 1 ± fh(x, p) (8)

are responsible for fermion Pauli blocking or Bose en-
hancement, respectively, depending on the type of hadron
in the final/initial channel. The dots in eq. (5) stand for
further contributions to the collision term with more than
two hadrons in the final/initial channels (cf. ref. [45]). The
transport approach (4) is fully specified by US

h (x, p) and
Uµ

h (x, p) (µ = 0, 1, 2, 3), which determine the mean-field
propagation of the hadrons, and by the transition rates
G†Gδ4(. . .) in the collision term (5), that describes the
scattering and hadron production/absorption rates.

The scalar and vector mean fields US
h and Uµ

h for nucle-
ons are modeled as in ref. [44], however, slightly modified
in line with ref. [46]. In fig. 1 the real part of the nucleon
potential UN (p), defined by the difference between the in-
medium and vacuum energy

UN (p) = Π0(p) −
√

p2 +M2
0 , (9)

where M0 denotes the “free” nucleon mass, is shown at
density ρ0 (solid line) as a function of the momentum p
relative to the nuclear matter at rest. Whereas we see a net
attraction for momenta p ≤ 0.6 GeV/c, the nucleon poten-
tial becomes repulsive for higher momenta and reaches a
maximum repulsion at p ≈ 1.5 GeV/c. We mention that
at density ρ0 the potential UN (p) (9) compares well with
the potential from the data analysis of Hama et al. [47]
as well as Dirac-Brueckner computations from [48] up to
a kinetic energy Ekin of 1 GeV [44].
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Fig. 1. The nucleon potential (9) (solid line) at density ρ0

as a function of momentum relative to the nuclear matter at
rest as used in the CBUU transport approach. The hatched
area denotes the nuclear K+ potential at density ρ0 (within
the uncertainties) from the dispersion analysis in ref. [33].

Apart from the nuclear potentials each charged hadron
additionally moves in the background of the Coulomb po-
tential that is generated by the charged hadrons them-
selves. In case of proton-nucleus reactions —with the nu-
cleus at rest— this essentially amounts to a Coulomb ac-
celeration in the final state for positively charged hadrons
and a deceleration for negatively charged particles. Note
that, for heavy nuclei like Pb or Au the Coulomb potential
in the nuclear interior (for p, π+,K+) is ∼ 20 MeV, i.e. of
the same order of magnitude as the “expected” repulsive
K+ nuclear potential.

The hyperon mean fields, furthermore, are assumed
to be 2/3 of the nucleon potentials. In the present ap-
proach, apart from nucleons, ∆, N(1440), N(1535), Λ, Σ
with their isospin degrees of freedom, we propagate ex-
plicitly pions, K+,K−, and η’s and assume that the pi-
ons as Goldstone bosons do not change their properties in
the medium; we also discard self-energies for the η-mesons
which have a minor effect on the kaon dynamics. The kaon
and antikaon potentials, however, have to be specified ex-
plicitly.

2.1 K+ and K− self-energies

Apart from (2), (3) there is a couple of models for the kaon
and antikaon self-energies [21,27,49], which differ in the
actual magnitude, however, agree on the relative signs for
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kaons and antikaons. Thus, in line with the kaon-nucleon
scattering amplitude the K+ potential should be slightly
repulsive at finite baryon density, whereas the antikaon
should see an attractive potential in the nuclear medium.
Without going into a detailed discussion of the various
models (cf. ref. [26] and figures therein) we adopt the more
practical point of view, that the actual K+ and K− self-
energies are unknown and as a guide for our analysis use
a linear extrapolation of the form

m∗
K(ρB , p) = m0

K

(
1 + α(p)

ρB

ρ0

)
, (10)

with α(p) denoting a momentum-dependent coefficient.
Following the dispersion analysis of Sibirtsev et al. [33]
the coefficients α(p) can be modelled in line with the K±
potentials from fig. 9 of [33]; the resulting kaon potential
UK+ at density ρ0 is shown in fig. 1 in terms of the hatched
area and remains repulsive for all momenta considered. In
the momentum range of interest in this study, i.e. 0.1–
1.0 GeV/c, the K+ potential at density ρ0 may be ap-
proximately represented by a constant of UK+ ≈ 20 MeV
taking into account the relative uncertainty of ±10 MeV
from the analysis in ref. [33]. Since the antikaon dynamics
has been investigated in ref. [33] for p + A reactions, we
skip a further description of the actual implementation of
the K− potential.

2.2 Perturbative treatment of strangeness production

The calculation of “subthreshold” particle production has
to be treated perturbatively in the energy regime of in-
terest due to the small cross-sections involved. Since we
work within the parallel ensemble algorithm in the CBUU
approach, each parallel run of the transport calculation
can be considered approximately as an individual reac-
tion event, where binary reactions in the entrance channel
at given invariant energy

√
s lead to final states with 2

(e.g., K+Y in πB channels), 3 (e.g., for K+Y N channels
in BB collisions) or 4 particles (e.g., KK̄NN in BB col-
lisions) with a relative weight Pi for each event i which is
defined by the ratio of the production cross-section to the
total hadron-hadron cross-section2. We thus dynamically
gate on all events where a K+Y or K+K− pair is pro-
duced initially. Each strange hadron production event i is
represented by ∼ 103 test particles for the final strange
hadron j with individual weight W i

j such that the sum
of the weights W i

j over j reproduces the individual pro-
duction probability Pi and the distribution in momenta
(multiplied with the NN or πN cross-section) describes
the differential production cross-section (see below).

We use two different strategies to simulate the mo-
mentum differential distribution of kaons and hyperons
in NN or ∆N and πN collisions: For NN or ∆N re-
actions —in their center-of-mass system— we generate
for each collision event, e.g. 103, final states of the type

2 The actual final states are chosen according to the 2-, 3-,
or 4-body phase space.

K+Y N by Monte Carlo according to 3-body phase (in-
cluding the potential effects on their energies). The four-
momenta ki of the particles then are Lorentz-transformed
to the calculational frame and the individual weights W j

i
(j = 1, . . . , 1000) are determined from the ratio of the dif-
ferential production cross-section (for the kaon momentum
ki) and the total pN or ∆N cross-section. When perform-
ing ∼ 100 parallel runs and ∼ 100 subsequent simulations
this gives (e.g., at Tlab = 2.3 GeV) about 107 kaons and
hyperons with individual weights. This number of strange
hadrons is sufficient to represent their Lorentz-invariant
differential momentum distribution with good statistics.
Note that, a high statistics is mandatory for the K+ spec-
tra especially when restricting to narrow angular bins in
the laboratory.

The above recipe is traditionally employed in transport
simulations of nucleus-nucleus reactions [42]. However, in
case of secondary πN → KY reactions the Monte Carlo
simulation described above does not give sufficient statis-
tics for momentum differential spectra from πN collisions
in case of p+A reactions. This is due to the fact that the
pion multiplicity per reaction is typically lower than 1 and
only a small fraction of the energetic pions (e.g., at Tlab =
1 GeV) can lead to a K+Y final state. On the other hand,
the secondary πN reactions are expected [17] to give the
dominant contribution to K+ production at subthreshold
bombarding energies. In order to resolve this “technical”
problem, we go back to an integral formulation for dif-
ferential kaon yields from πN collisions (cf. subsect. 2.5)
and calculate the corresponding integrals numerically on
a fixed grid in three-momentum k. Each grid point then
is represented by a kaon test particle with 3-momentum
k and a weight determined from (17), while the quasi-
particle energy EK includes the local potential energy.

Once produced the “perturbative” hadrons are propa-
gated according to the Hamilton equations of motion in-
cluding the potentials. Elastic and inelastic reactions with
pions, η’s or nonstrange baryons are computed in the stan-
dard way [39]. The final differential cross-sections are ob-
tained by multiplying each test particle weight W i

j by the
total inelastic pA cross-section and gating on the experi-
mental acceptance of the different detectors3. In this way
one achieves a realistic simulation of the strangeness pro-
duction, propagation and reabsorption during the proton-
nucleus collision with sufficient statistics to allow for selec-
tive cuts also at the low bombarding energy of 1.0 GeV,
where the total K+ cross-section is in the order of 1µb
(for Au) or below (for 12C).

2.3 Elementary cross-sections

For the present study the production of pions by pN
collisions in p + A reactions as well the total kaon cross-
sections in pN and πN collisions are of relevance. The
pion production cross-section from NN interactions is
based on the parametrization of the experimental data by

3 The cross-sections are normalized by default to the number
of parallel runs and subsequent simulations.
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Fig. 2. Comparison of our parametrization for the inclusive
K+ production cross-section in pp reactions (solid line) with
the data from refs. [52,53]. The dotted line corresponds to the
parametrization from Zwermann [54] used earlier in refs. [17,
18].

Ver West and Arndt [50] and implemented in the trans-
port model as described in ref. [39]. The cross-sections for
the channels πN → KY , where Y stands for a hyperon
Λ,Σ, are taken from the analysis of Huang et al. [51]
and essentially correspond to the experimental data for
the different πN channels in vacuum (or “free” space).
Note that, in addition to our early studies in [17,18] the
channels with a Σ-hyperon are taken into account. All
cross-sections are reparametrized as a function of the
invariant energy above threshold

√
s − √

s0 [22], where√
s0 denotes the threshold for the individual channel

given by the sum of the hadron masses in the final state of
the reaction. We recall that the differential cross-sections
for binary reactions are fully determined by the total
cross-sections when assuming an S-wave dominance.

Whereas the production cross-section of kaons from
pN collisions close to threshold has been essentially un-
known about a decade ago, the ambiguity in this cross-
section has been resolved experimentally by now [52] and
more adequate parametrizations of the cross-sections can
be employed. The experimental data from refs. [52,53] on
the pp→ K+ +X reactions are displayed in fig. 2 in com-
parison to the current approximation (solid line) and the
estimate from Zwermann [54] (dotted line) used earlier [17,
18]. Thus the problem of “free” cross-sections for pN colli-
sions is sufficiently under control. For ∆N collisions, how-
ever, no experimental data are available. We use the same
cross-section as a function of the invariant energy

√
s as

in the pN case keeping in mind this basic uncertainty.
The question arises, furthermore, about the in-medium

production cross-sections —essentially at density ρ0— if
potentials or self-energies are involved. Here we employ the
assumption that the production matrix element squared
|M |2 does not change in the medium and the change of
cross-section can be described by a change of the available
phase space. This notion is guided by the experimental ob-
servation that meson production from pp collisions is well

described by phase space [55,56] if final-state interactions
(FSI) between the hadrons are taken into account. These
FSI, furthermore, are found to be dominated by the final
baryon-baryon interaction, which is very strong in the pp,
pn or pΛ channels in free space. On the other hand, such
FSI are screened in the nuclear medium due to the sur-
rounding nucleons such that in-medium production cross-
sections for mesons are expected to vary essentially with
the available phase space. It is thus sufficient to shift the
threshold in a pN collision to√

s∗0 = Π0
N (pN ) +Π0

Λ(pΛ) +Π0
K(pK) (11)

using (7), where the momenta pN , pΛ, pK denote the rel-
ative momenta with respect to the nuclear-matter rest
frame.

2.4 Folding model and its limitations

We briefly recall the assumptions of the folding model,
that is used in part for the evaluation of momentum-
dependent differential production probabilities from sec-
ondary pion-nucleon collisions in the CBUU approach (cf.
subsect. 2.5). It is described in more detail for proton-
nucleus reactions in [17,57,58]. The underlying picture is
that the proton impinging on a nucleus at a bombarding
energy Tlab > 400 MeV is producing a meson x with mo-
mentum kx only in the first collision due to the available
energy in the reaction. The Lorentz-invariant differential
cross-section to produce a meson in a primary proton-
nucleon (pN) collision is given by [57]

(
Ex

d3σNN
x

d3kx

)
prim.

=
∫

d3pdω
(
E′

x

d3σe
x(
√
s)

d3k′x

)
S(p, ω),

(12)
where the Pauli-blocking factor for the final nucleon
states is neglected since kinematically the nucleons end
up in an unoccupied regime in momentum space at
the bombarding energies of interest. In eq. (12) S(p, ω)
stands for the target spectral function (normalized to
1) which can be taken from experiment, e.g. ref. [59], or
parametrized accordingly. In eq. (12) the primed indices
denote meson momenta in the individual nucleon-nucleon
cms frame which have to be Lorentz transformed to
the detection frame. The quantity

√
s is the invariant

energy of the individual NN system, while the elemen-
tary differential cross-section d3σe

x(
√
s)/d3kx in (12) is

parametrized according to phase space (cf. [17]) and
assumed to be isotropic in the NN cms frame.

In order to obtain the inclusive differential kaon cross-
section in a p+ A reaction within the folding model, one
has to multiply the differential cross-section (12) by the
number of first-chance collisions N1(A). This number is
approximately given by the area of the target divided by
the pN cross-section, i.e. N1(A) ≈ πR2

target/σpN . To be
more accurate one can use Glauber theory which leads to
N1 ≈ 7.3 for p + 12C [18,35]. The contributions to the K+

yield from secondary or further sequential NN collisions
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is discarded in the folding model at subthreshold ener-
gies due to the energy straggling of the impinging proton
and due to the fact that already the first-chance collisions
only give a minor contribution to the K+ yield observed
experimentally.

Apart from the primary reaction channels described
above, the first NN collision may also lead to the exci-
tation of a ∆-resonance or even higher baryon resonances
(e.g., N(1440), N(1535), . . .) which decay to nucleons and
essentially pions due to their short lifetimes of ≈ 1 fm/c or
collide with another nucleon before decaying. The differ-
ential cross-section to produce a K+-meson in a collision
of an on-shell pion with a nucleon from the target at in-
variant energy

√
s then is given by

(
EK

d3σπN
K

d3k

)
=

∑
c

∫
d3pdωS(p, ω)

×
(
E′

K

d3σπN→Y K+(
√
s)

d3k′

)
c

(13)

similar to (12), where now the differential cross-sections
for the reactions πN → K+Y enter. Here, the index c
denotes all individual channels while the hyperon Y stands
again for a Λ- or Σ-baryon.

In order to evaluate the K+ yield from secondary
πN → K+Y collisions, one folds the primary pion dis-
tribution —given by the primary differential pion cross-
section that is divided by the total pN cross-section σtot—
with the nucleon spectral function S(p, ω) and the invari-
ant production cross-section, i.e.

(
EK

d3σK

d3k

)
sec.

=
∑

c

∫ ∫
d3pdω
σtot

d3k′π
E′

π

S(p, ω)

×
(
E′

K

d3σπN→Y K+(p,k′
π)

d3k′

)
c

(
E′

π

d3σpN→πX

d3k′π

)
prim.

×gπ(A). (14)

In eq. (14) the single prime indices denote the system
of the intermediate pion and a target nucleon. More-
over, E′

πd3σpN→πX/d3k′π stands for the π-meson differ-
ential cross-section, which is calculated according to (12),
while σtot denotes the total proton-nucleon cross-section.
The factor gπ(A) in (14) accounts for the probability that
the pion interacts again with a target nucleon (cf. [57]).
Note that, by eq. (14) the intermediate pion is assumed
to be on-shell which might not hold for deep subthreshold
kaon production. As in case of the primary channel the
expression (14) has to be multiplied by N1(A) in the fold-
ing model. Furthermore, some estimate for the secondary
rescattering probability gπ(A) has to be employed as, e.g.,
described in ref. [60].

The one- and two-step folding model has been used
often in the analysis of kaon- or η-meson production [17,
18,35,57,58,61,62] initially employing parametrized mo-
mentum distributions (cf. refs. [17,18]) instead of spectral
functions. They allow for an estimate of differential cross-
sections in case of weakly interacting probes and may serve

as reference calculations for more involved simulations em-
ploying all initial- and final-state interactions during the
reaction as the transport approach developed here.

2.5 Implementation of K+ production from πN
collisions

Whereas kaon production from pN , ∆N or resonance-
nucleon reactions is treated in the CBUU approach dy-
namically as described in subsect. 2.2, a different imple-
mentation is used for πN collisions. This is necessary since
energetic secondary pion-nucleon collisions suffer from
very low statistics in transport simulations of p + A re-
actions. On the other hand, their contribution to the kaon
yield is expected to be high at subthreshold energies [17,
18]. We thus implement the secondary pion-nucleon pro-
duction channels for kaons following concepts of the fold-
ing model as described below.

We note that the primary differential multiplicity of
pions (with charge Z = −1, 0, 1), i.e.(

Eπ
d3Mπ

d3kπ

)Z

(15)

can be calculated in the transport model directly, however,
with low statistics in the high-momentum tails. In (15) we
address to the pion spectrum before rescattering with a
nucleon which has to be distinguished from the final pion
spectrum for t → ∞. An integration of (15) with respect
to d3kπ/Eπ gives the primary multiplicity of pions with
charge Z, while dividing (15) by this number we obtain the
normalized primary pion spectrum from the transport cal-
culation. On the other hand, the primary differential pion
spectrum from the folding model can be evaluated from(

Eπ
d3Mπ

d3kπ

)Z

prim.

=
1
NZ

∫
d3pdω
σtot

S(p, ω)

×
(
E′

π

d3σpN→π+X(
√
s)

d3k′π

)Z

, (16)

where the factor NZ ensures a normalization to unity.
In fact, the distributions (15) and (16) turn out to be
identical —within statistics due to the Monte Carlo simu-
lation for the pion spectrum in the transport approach—
since the same differential pion production cross-sections
are used. The only remarkable difference lies in the
high-momentum tails, which (in contrast to (15)) are
given by (16) with good accuracy.

The differential probability, to produce a K+ with mo-
mentum k, e.g., in the reaction π0p→ K+Λ then is given
by folding the pion distribution function (16) with the
corresponding production cross-section and the nucleon
spectral function(

EK
d3PK+

d3k

)
=

∫ ∫
d3pdω
σπN

d3k′π
E′

π

S(p, ω)

×
(
E′

K

d3σπ0p→K+Λ(
√
s)

d3k′

)(
E′

π

d3Mπ

d3k′π

)Z=0

prim.

. (17)
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Similar equations hold for the channels π0p → K+Σ0,
π−p → K+Σ−, π+p → K+Σ+, that are calculated sepa-
rately and implemented in the transport approach for each
primary πN collisions. Roughly speaking, in the transport
calculation the number of primary πN reactions is calcu-
lated dynamically for all secondary channels c —for each
system A and energy Tlab— and the differential K+ mul-
tiplicity is obtained by multiplying these dynamical num-
bers with the differential probabilities (17) and summing
up all channels c.

We point out, that the implementation described
above compares well with the Monte Carlo scheme (sub-
sect. 2.2) for secondary πN reactions concerning the total
number of kaons produced from Tlab = 1.5–2.3 GeV, while
the details in the differential spectra cannot be controlled
at low Tlab by the Monte Carlo simulations due to low
statistics as mentioned before. Thus, it is very difficult to
give an estimate for a “systematic error” with respect to
the implementation used. Only a detailed comparison to
data —preferentially taken by the same collaboration—
for different target nuclei from ∼ 1 GeV to laboratory en-
ergies above K+Λ threshold will finally shed some light
on the “errors” involved.

2.6 K+ rescattering

As indicated in subsect. 2.4, the folding model is useful
for the evaluation of total K+ yields, however, becomes
questionable in case of differential spectra especially for
heavy targets like Au or Pb, since kaon elastic rescatter-
ing cannot be described in a straightforward manner. In
order to show the influence of K+ rescattering on the kaon
spectra at different angles we show in fig. 3 a comparison
of our extended CBUU calculations with (solid lines) and
without (dashed lines) kaon rescattering for p + Pb at
1.5 GeV. As can be seen from fig. 3 the K+ yield in for-
ward direction (θ ≤ 15◦) is reduced by up to a factor
of 2, while for large angles in the laboratory (80◦) the
kaon spectra become enhanced and also shifted to lower
momenta in the laboratory. Thus, rescattering has to be
included as a necessary ingredient for the calculations if
comparisons to differential spectra are made on an abso-
lute scale and especially, if one attempts to extract kaon
potentials from the spectral shape (see below). We note
that kaon rescattering thus will always be included in the
calculations to be shown in the following. Furthermore, we
mention that the results from the folding model (12), (14)
agree with the resulting spectra from the CBUU calcula-
tion for p + Pb and p + C at 1.5 GeV within 30% when
neglecting final-state interactions as well as nuclear and
Coulomb potentials.

3 Comparison to experimental data

In this section we compare our calculations to the exper-
imental K+ spectra available from 1.0 GeV to 2.5 GeV
bombarding energy on different targets. In order to have
an identical assignment of lines in this section the dotted
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Fig. 3. Comparison of the differential K+ spectra for p + Pb
at 1.5GeV at different angles in the laboratory from 15◦ to
80◦. The solid lines are obtained from CBUU calculations in-
cluding kaon rescattering, whereas the dashed lines are without
rescattering.

lines in figs. 4-9 correspond to CBUU calculations with-
out baryon and kaon potentials, the dashed lines show
the results with baryon potentials included while the solid
lines reflect calculations including both, nucleon and kaon
potentials as specified in fig. 1. In all calculations, further-
more, the Coulomb potential will be included by default.

We start in fig. 4 with a comparison to the data of the
KaoS/SPES3 Collaboration for the differential K+ spec-
tra for p + Pb and p + C at 1.5 GeV and θlab = 40 ± 5◦
from SATURNE [35]. The experimental spectra for the Pb
target are seen to be described roughly within the error
bars for all calculations, i.e. with and without potentials,
such that one is not very sensitive to in-medium potentials
at 1.5 GeV in the momentum range above 350 MeV/c. For
lower kaon momenta the repulsive K+ potential leads to
a sizeable decrease (or shift) in the spectra which can be
attributed to the additional acceleration of the kaons by
the nuclear K+ potential when propagating from the nu-
clear interior to the vacuum. In case of the 12C target the
effects from the momentum-dependent nucleon potentials
as well as from the K+ potential are similar to the Pb
target. It both cases the calculations without potentials
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Fig. 4. Comparison of the CBUU calculations for the dif-
ferential K+ spectra for p + Pb and p + C at 1.5GeV and
θlab = 40 ± 5◦ with the experimental data from ref. [35]. The
dotted lines are obtained from CBUU calculations without
baryon and kaon potentials, the dashed lines show the results
with baryon potentials included, while the solid lines corre-
spond to calculations including both nucleon and kaon poten-
tials. Note that, the effect of the repulsive kaon potential is a
reduction of the total K+ yield as well as a shift of the spectra
at lower momenta.

(dotted lines) slightly overestimate the data, but it is not
possible to draw already some conclusion on the actual
size of the K+ potential since a single comparison might
suffer from systematic errors.

In figs. 5 and 6 we compare the CBUU calculations for
the differential K+ spectra for p + Pb and p + NaF at
2.1 GeV with the experimental data from the LBL Berke-
ley [34] for different laboratory angles from 15◦ to 80◦. At
this bombarding energy the nucleon and Λ final momenta
on average are above 0.6 GeV/c such that their potentials
at finite density (cf. fig. 1) are repulsive. As a consequence
the calculated kaon yield decreases when including the
baryon potentials in the final state. Taking into account
additionally the repulsive K+ potential decreases essen-
tially the spectrum for momenta below 250 MeV/c, but
leaves the spectrum practically unmodified for higher mo-
menta, since the relative change of the K+ energy by the
kaon potential is only small.

In all approximations the experimental spectra are un-
derestimated by factors ∼ 2–3 at 15◦ and 35◦, which at
first sight might be attributed to an improper energy de-
pendence of the calculations. However, a comparison of
the CBUU calculations for p + Au with the preliminary
data from ref. [63] (taken at GSI) and p + C at 2.5 GeV
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Fig. 5. Comparison of the CBUU calculations for the differen-
tial K+ spectra for p + Pb at 2.1GeV with the experimental
data from ref. [34] at different angles in the laboratory. The dot-
ted lines are obtained from CBUU calculations without baryon
and kaon potentials, the dashed lines show the results with
baryon potentials included, while the solid lines correspond to
calculations including both nucleon and kaon potentials.

and θlab = 40± 5◦ with the experimental data from SAT-
URNE [35] in fig. 7 shows that these spectra are overesti-
mated by up to a factor of 2–3 at higher kaon momenta.
Note that, the corresponding data from ref. [63] so far
have to be considered as preliminary. These findings sug-
gest that the spectra from ref. [34] are systematically too
high by about factors of 2–3 or the data from the KaoS
Collaboration too low (by about the same factor).

To further test the (over) underprediction of the trans-
port model we show in fig. 8 a comparison of the CBUU
calculations for the differential K+ spectra for p + C at
1.2 GeV with the experimental data from ref. [36] at θlab =
90◦ (open circles) taken at CELSIUS and θlab = 40 ± 5◦
(full squares) from the KaoS/SPES3 Collaboration [35]
taken at SATURNE. In this particular case the spectra
from ref. [35] are slightly overestimated by the calcula-
tions when neglecting the kaon potential while the spectra
from ref. [36] at 90◦ are underestimated by about a factor
of 5–6 when neglecting the repulsive K+ potential and by
about an order of magnitude for the repulsive kaon po-
tential included, which leads again to a sizeable decrease
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Fig. 6. Comparison of the CBUU calculations for the differen-
tial K+ spectra for p + NaF at 2.1GeV with the experimental
data from ref. [34] at different angles in the laboratory. The dot-
ted lines are obtained from CBUU calculations without baryon
and kaon potentials, the dashed lines show the results with
baryon potentials included, while the solid lines correspond to
calculations including both nucleon and kaon potentials.

of the spectra at low momentum. It is not clear to the
authors where such discrepancies might come from.

The CBUU calculations demonstrate that the kaon
spectra at 90◦ and 40◦ are slightly enhanced (dashed lines)
when taking the nucleon potential effects into account.
Contrary to the kinematical situation at Tlab = 2.1 (or
1.5) GeV the nucleon and Λ final momenta here on av-
erage are below 0.6 GeV/c, where the potentials are at-
tractive (cf. fig. 1), such that the K+ production becomes
enhanced (dashed lines) relative to the free case (dotted
lines). When including additionally the overall repulsive
kaon potential the K+ spectrum drops again (solid lines).

We now turn to the kinematical conditions of the
ANKE experiments at COSY-Jülich [37], that have taken
K+ spectra in forward direction for θlab ≤ 12◦. The cal-
culated differential K+ spectra for p + 12C at 1.0 GeV for
θlab ≤ 12◦ are displayed in fig. 9 in comparison to the data
from ref. [38]. The dotted lines again are obtained from
CBUU calculations without baryon and kaon potentials,
the dashed lines show the results with baryon potentials

10 2

0 500 1000

P
K +      (MeV/c)

d
2 σ 

/ d
Ω

dp
   

( 
nb

/(
M

eV
/c

 s
r)

 )

 p + 197Au
(preliminary)

 p + 12C

Tp = 2.5 GeV

40o

Fig. 7. Comparison of the CBUU calculations for the differ-
ential K+ spectra for p + Au (upper part) and p + C (lower
part) at 2.5GeV and θlab = 40±5◦ with the experimental data
from refs. [63,35]. The dotted lines are obtained from CBUU
calculations without baryon and kaon potentials, the dashed
lines show the results with baryon potentials included, while
the solid lines correspond to calculations including both nu-
cleon and kaon potentials.

included while the solid lines correspond to calculations
with both, nucleon and kaon potentials. At this low bom-
barding energy the net attractive baryon potentials in the
final state enhance the K+ yield by about a factor of 2
whereas the additional repulsive K+ potential leads again
to a decrease by a factor ∼ 3. The data from ref. [38] are
rather well described by the calculations that include the
baryon and K+ potentials (solid line), whereas the other
limits clearly fail. This might be considered as a first indi-
cation for the observation of a repulsive K+ potential in
p+A reactions, however, a full systematics in target mass
A and laboratory energy Tlab will be needed to pin down
this effect unambiguously.

Without explicit representation we mention that at
Tlab = 1.0 GeV the contributions from the two-step mech-
anisms ∆N → K+Y N and πN → K+Y amount to
∼ 75% for a 12C target and to ∼ 90% for an Au tar-
get. Thus, the dominant fraction of the K+ yield is due
to the secondary channels in line with the earlier calcu-
lations in refs. [17,18]. Consequently, one does not probe
high-momentum components of the nuclear wave function
by K+ spectra at subthreshold energies in a direct way.
At Tlab = 2.3 GeV the secondary channels in case of an
Au target amount to about 30% and in case of a C target
to less than 20%. This relative change with target mass
number is attributed to the fact that for the small 12C
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Fig. 8. Comparison of the CBUU calculations for the differ-
ential K+ spectra for p + C 1.2GeV with the experimental
data from ref. [36] at θlab = 90

◦ (open circles; lower lines)
and θlab = 40± 5◦ [35] (full squares; upper lines). The dotted
lines are obtained from CBUU calculations without baryon and
kaon potentials, the dashed lines show the results with baryon
potentials included, while the solid lines correspond to calcu-
lations including both nucleon and kaon potentials.

target only a fraction of the high-energy pions rescatters
in the target and produces K+Y pairs. Moreover, the role
of the secondary channels decreases with increasing kaon
momentum such that the high-momentum K+ tail of the
spectra is dominated by the first-chance pN production
channel as found out before by Paryev [58].

Furthermore, it is worth to point out that the contri-
bution of the primary channel pN → K+Y N is enhanced
by up to a factor of 3 within the angular range of θ ≤ 12◦
as compared to the angle integrated yield at the energy
Tlab = 1.0 GeV. Thus, the experimental mass dependence,
when expressed in terms of a scaling ∼ Aα, does not allow
to disentangle the relative contribution of the different re-
action channels in a satisfying manner for narrow cuts in
the K+ angular distribution.

In order to provide some guideline for extrapolations
between experiments measuring K+ spectra at different
angles in the laboratory, we show in fig. 10 the angular
distribution of the kaons for momenta 0.2 GeV/c ≤ pK ≤
0.5 GeV/c as calculated within the extended CBUU ap-
proach for both, baryon and kaon potentials for p + 12C
at Tlab = 1.0, 1.2, 1.5, 1.8, 2.0 and 2.3 GeV. These angular
distributions are rather flat within the angular acceptance
of the ANKE spectrometer of ∼ 12◦, however, drop sub-

Fig. 9. The calculated differential K+ spectra for p + C at
1.0GeV for θlab ≤ 12◦ within the acceptance of the ANKE
spectrometer in comparison to the data from [38]. The dotted
line is obtained from CBUU calculations without baryon and
kaon potentials, the dashed line shows the results with baryon
potentials included, while the solid line corresponds to calcu-
lations including both nucleon and kaon potentials.

stantially for angles larger than 40◦. Thus, our calculations
(cf. also fig. 9) do not support the idea of a “thermal” pro-
duction mechanism for kaons in case of p+A reactions.

4 Summary

In this work we have studied the production of K+-
mesons in proton-nucleus collisions from 1.0 to 2.5 GeV
with respect to one-step nucleon-nucleon and two-step ∆-
nucleon or pion-nucleon production channels on the basis
of a coupled-channel transport approach (CBUU) includ-
ing differential transition probabilities from πN reactions
that have been calculated within the folding model (sub-
sect. 2.5). We have included the kaon final-state interac-
tions, which are important for heavy targets like Au or Pb,
and explored the effects of momentum-dependent poten-
tials for the nucleon, hyperon and kaon in the nucleus. A
comparison of the calculations to the experimental K+

spectra taken at LBL Berkeley, SATURNE, CELSIUS,
GSI and COSY-Jülich has shown that the different data
sets are not compatible with each other. Thus no clear
signal on in-medium potentials could be extracted from
our analysis in comparison to experimental spectra so far.

However, the detailed calculations demonstrate that
precise and complete spectra show a substantial sensitiv-
ity to the potentials and their momentum dependence.
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Fig. 10. The calculated angular distribution of the K+ spec-
tra for p + C at 1.0, 1.2, 1.5, 1.8, 2.0 and 2.3GeV for 0.2 ≤
pK ≤ 0.5GeV/c. The solid lines are obtained from CBUU cal-
culations including both nucleon and kaon potentials.

At low bombarding energies of ∼ 1.0 GeV the net attrac-
tive potentials for the nucleon and the Λ-hyperon in the
final state lead to a relative enhancement of the K+ spec-
tra while at higher bombarding energies (∼ 2 GeV) the
baryon potentials are repulsive and thus suppress K+ pro-
duction relative to the free case. This phenomenon should
be seen in the excitation function of the K+ cross-section
when varying Tlab from 1.0 to 2.5 GeV. Furthermore, the
shape of the spectrum for low K+ momenta in the lab-
oratory is very sensitive to both Coulomb and nuclear
kaon potentials, since the kaons are accelerated by both
forces when leaving the nuclear environment and prop-
agating to the continuum. The relative strength of this
momentum shift in the forward K+ spectra is propor-
tional to the square root of the sum of both potentials,
i.e. ∆p ≈ √

2MK(UCoul + UK). Thus the K+ spectral
shape at low momenta (or kinetic energies TK) allows to
determine the strength of the K+ potential from exper-
imental data in an almost model-independent way espe-
cially when comparing kaon spectra from light and heavy
targets at the same bombarding energy [64] as a function
of TK . Since most of the K+ spectra measured so far have
been taken at higher momenta in the laboratory (except
for ref. [38]) this finding opens up interesting perspectives
for the ANKE Collaboration at COSY-Jülich, which has
performed a systematic study of K+ production in p+A
reactions down to momenta of 150 MeV/c in the labora-
tory or TK ≈ 23 MeV, respectively.

These data are expected to also shed some light on
the open issues in the transport calculations, i.e., the
∆N → K+ +X production cross-sections, the in-medium

transition rates for the channels πN → K+Y and the on-
shell assumption for the intermediate pion in secondary
kaon production channels.

The authors like to acknowledge valuable discussions with M.
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